Abstract
The Dabie–Sulu orogenic belt of east-central China has long been a type location for the study of geodynamic processes associated with ultrahigh-pressure (UHP) tectonics. Much of our understanding of the world's most enigmatic processes in continental deep-subduction zones has been deduced from various records in this belt. By taking advantage of having depth profiles from core samples of the Chinese Continental Scientific Drilling (CCSD) project in the Sulu orogen, a series of combined studies were carried out for UHP metamorphic rocks from the main hole (MH) at continuous depths of 100 to 5000 m. The results provide new insights into the chemical geodynamics of continental subduction-zone metamorphism, especially on the issues that are not able to be resolved from the surface outcrops. Available results from our geochemical studies of CCSD-MH core samples can be outlined as follows. (1) An O isotope profile of 100 to 5000 m is established for the UHP metamorphic minerals, with finding of 18O depletion as deep as 3300 m. Along with areal 18O depletion of over 30,000 km 2 along the Dabie–Sulu orogenic belt, three-dimensional 18O depletion of over 100,000 km 3 occurs along the northern margin of the South China Block. (2) Changes in mineral O isotope, H isotope and water content occur in eclogite-gneiss transitions, concordant with petrographic changes. The contact between different lithologies is thus the most favorable place for fluid action; fluid for retrogression of the eclogites away from the eclogite-gneiss boundary was derived from the decompression exsolution. For the eclogites adjacent to gneiss, in contrast, the retrograde metamorphism was principally caused by aqueous fluid from the gneiss that is relatively rich in water. Inspection of the relationship between the distance, petrography and δ 18O values of adjacent samples shows O isotope heterogeneities between the different and same lithologies on scales of 20 to 50 cm, corresponding to the maximum scales of fluid mobility during the continental collision. (3) Studies of major and trace elements in the two continuous core segments indicate high mobility of LILE and LREE but immobility of HFSE and HREE. Some eclogites have andesitic compositions with high SiO 2, alkalis, LREE and LILE but low CaO, MgO and FeO contents. These features likely result from chemical exchange with gneisses, possibly due to the metasomatism of felsic melt produced by partial melting of the associated gneisses during the exhumation. On the other hand, some eclogites appear to have geochemical affinity to refractory rocks formed by melt extraction as evidence by strong LREE and LILE depletion and the absence of hydrous minerals. These results provide evidence for melt-induced element mobility in the UHP metamorphic rocks, and thus the possible presence of supercritical fluid during exhumation. In particular, large variations in the abundance of such elements as SiO 2, LREE and LILE occur at the contact between eclogite and gneiss. This indicates their mobility between different slab components, although it only occurs on small scales and is thus limited in local open-systems. (4) Despite the widespread retrogression, retrograde fluid was internally buffered in stable isotope compositions, and the retrograde fluid was of deuteric origin and thus was derived from the decompression exsolution of structural hydroxyl and molecular water in nominally anhydrous minerals. (5) A combined study of petrography and geochronology reveals the episode of HP eclogite-facies recrystallization at 216 ± 3 Ma, with timescale of 1.9 to 9.3 Myr or less. Collectively, the Dabie–Sulu UHP terrenes underwent the protracted exhumation (2–3 mm/yr) in the HP-UHP regime. (6) Zircon U–Pb ages and Hf isotopes indicate that mid-Neoproterozoic protoliths of bimodal UHP metaigneous rocks formed during supercontinental rifting along preexisting arc-continent collision orogen, corresponding to dual bimodal magmatism in response to the attempted breakup of the supercontinent Rodinia at about 780 Ma. The first type of bimodal magmatism was formed by reworking of juvenile Late Mesoproterozoic crust, whereas the second type of bimodal magmatism was principally generated by rifting anatexis of ancient Middle Paleoproterozoic crust. In conclusion, the geochemical studies of CCSD-MH core samples have placed important constraints on the nature and scale of fluid action and element mobility during the continental subduction and UHP metamorphism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have