Abstract

In this paper, a wet-dry hybrid technique to transfer patterned reduced graphene oxide (rGO) thin film to arbitrary substrates at predetermined locations without using any chemicals is reported. The transfer process involves water-assisted delamination of rGO, followed by dry transfer to an acceptor substrate using viscoelastic stamp. Patterned reduced graphene oxide films are transferred to silicon dioxide (SiO2/Si) substrate to begin with. Subsequently, the method is deployed to transfer rGO to different polymer substrates such as poly(methyl methacrylate) (PMMA), and crosslinked poly(4-vinylphenol) (c-PVP), which are commonly used as gate dielectric in flexible electronic applications. The credibility of the transfer process with precise spatial positioning on the target substrate leads to fabrication of freely suspended reduced graphene oxide membrane towards nanoelectromechanical systems (NEMS) based devices such as nanomechanical drum resonators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.