Abstract

The pollution of potentially toxic elements (PTEs) in Baiyangdian Lake (BYDL), the largest shallow lake in northern China, has been focused on since the construction of the Xiong'an New Area. However, research on the bioavailability and diffusive flux of PTEs in BYDL sediments has been still limited. Herein, sediment samples were collected from BYDL to systematically evaluate the pollution risk, bioavailability, and diffusion flux of PTEs using multiple methods, including the pollution indexes, risk assessment code, bioavailable metal index, the sequential extraction, and diffusive gradients in thin-films (DGT). The results showed that the average concentrations of PTEs (except for Cd) were similar to the local background. The spatial distribution of PTEs showed that their contents were higher in northern sediments than in southern sediments, and risk assessment results suggest that Cd is the priority pollutant in the BYDL. Most PTEs in the sediments were mainly present in the residue fractions; however, Cd was mainly present in the non-residue fraction. Further analysis of the Cd content and chemical fraction showed that Cd was not only abundant in the northern sediments, but also that the non-residual fraction of Cd was significantly higher than in the southern sediments. The diffusive fluxes of PTEs in the northern sediments were also investigated in comparison with their chemical fractions. Results suggest that Cd has the potential to diffuse from the sediment into the overlying water. Additionally, upon combining the DGT and chemical fractions analyses, it was found that the PTEs which mainly in non-residual fraction tend to diffuse upwards into the overlying water. But, the release tendency of PTEs does not fully depend on their non-residual content. Overall, PTEs did not significantly contaminate BYDL sediments; nevertheless, the potential ecological risk of Cd should be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call