Abstract

Preservation of biological samples for downstream analysis is important for analytical methods that measure the biochemical composition of a sample. One such method, Raman microspectroscopy, is commonly used as a rapid phenotypic technique to measure biomolecular composition for the purposes of identification and discrimination of species and strains of bacteria, as well as investigating physiological responses to external stressors and the uptake of stable isotope-labelled substrates in single cells. This study examines the influence of a number of common chemical fixation and inactivation methods on the Raman spectrum of six species of bacteria. Modifications to the Raman-phenotype caused by fixation were compared to unfixed control samples using difference spectra and Principal Components Analysis (PCA). Additionally, the effect of fixation on the ability to accurately classify bacterial species using their Raman phenotype was determined. The results showed that common fixatives such as glutaraldehyde and ethanol cause significant changes to the Raman spectra of bacteria, whereas formaldehyde and sodium azide were better at preserving spectral features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.