Abstract
Derivatization strategies and specific derivatization reactions for conversion of simple alkyl halides, alcohols, phenols, thiols, and amines to ionic or solution-ionizable derivatives, that is [open quotes]electrospray active[close quotes] (ES-active) forms of the analyte, are presented. Use of these reactions allows detection of analytes among those listed that are not normally amenable to analysis by electrospray ionization mass spectrometry (ES-MS). In addition, these reactions provide for analysis specificity and flexibility through functional group specific derivatization and through the formation of derivatives that can be detected in positive ion or in negative ion mode. For a few of the functional groups, amphoteric derivatives are formed that can be analyzed in either positive or negative ion modes. General synthetic strategies for transformation of members of these five compound classes to ES-active species are presented along with illustrative examples of suitable derivatives. Selected derivatives were prepared using model compounds and the ES mass spectra obtained for these derivatives are discussed. The analytical utility of derivatization for ES-MS analysis is illustrated in three experiments: (1) specific detection of the major secondary alcohol in oil of peppermint, (2) selective detection of phenols within a synthetic mixture of phenols, and (3) identification of the medicinal amines within more » a commercially available cold medication as primary, secondary or tertiary. 65 refs., 3 figs., 3 tabs. « less
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have