Abstract

A new ex situ method has been developed to mimic the degradation of the polymer membranes in polymer electrolyte membrane fuel cells (PEMFCs), caused by the cross-leakage of H2 and O2. In this ex situ setup, it is possible to expose membranes to flows of different gases with a controlled temperature and humidity. H+-form Nafion films with and without an electrode layer (Pt) have been treated in the presence of different gases in order to simulate the anode and cathode side of a PEMFC. The changes of the chemical structure occurring during the degradation tests were primarily examined by solid-state 19F NMR spectroscopy. For completion, liquid-state NMR studies and ion-exchange capacity measurements were performed. The molecular mobility changes of the ionomer membrane upon degradation were examined for the first time by variable-temperature 19F NMR line-shape, T1 and T1ρ relaxation experiments. It was found that degradation occurs only when both H2 and O2 are present (condition of gas cross-leakage) and when the membrane is coated with a Pt catalyst. The chemical degradation rate is found to be highest for H2-rich mixtures of H2 and O2, which corresponds to the anode under OCV conditions. It is further shown that side-chain disintegration is very important for chemical degradation, although backbone decomposition also takes place. The temperature-dependent line-width and spectral anisotropy alterations were explained by the reduction of static disorder in the Nafion membrane. From the relaxation data, there is evidence for structural annealing, which is independent of the chemical degradation. Chemical degradation is considered to reduce the chain flexibility, as expressed by smaller motional amplitudes, most probably due to chain cross-linking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call