Abstract

BackgroundCitri Exocarpium Rubrum (CER), which is known as Juhong in Chinese, is the dried exocarp of Citrus reticulata Blanco and its cultivars (Fam. Rutaceae) and is currently used in Chinese medicine to protect the stomach and eliminate dampness and phlegm. The main aim of this study was to develop a high-performance liquid chromatography ultraviolet mass spectrometry (HPLC-UV-MS) method for determining the chemical compositions and fingerprint of CER. We also evaluated the antioxidant properties of CER based on its 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, ferric ion reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity (TEAC) assays.MethodsTen CER samples were collected from Hong Kong and mainland China. Each CER sample was extracted using an ultrasonic extraction method. Chromatographic separation was achieved using a conventional Dikma Inspire C18 column with photo diode array detection (190–400 nm). Hesperidin, nobiletin and tangeretin were quantified based on the UV signal observed at 330 nm. The column was eluted with a mobile phase consisting of water and acetonitrile (15–55%) over 55 min. Fingerprints combined with similarity and principal component analyses were used to classify the herbs. The DPPH free radical scavenging activity, FRAP and ABTS properties of the different CER samples were assayed. Bivariate correlation analysis was performed to investigate the correlation between the characteristic peaks and their antioxidant capacities.ResultsLimit of detection (LOD), limit of quantification (LOQ), linearity, inter-day precision, intra-day precision, repeatability, stability and recovery of the developed method were validated, and the method was subsequently used to determine the contents of hesperidin, nobiletin and tangeretin, and to acquire the fingerprints of the CER samples. Seventeen characteristic peaks were found in the fingerprints, and eleven of them were identified. Bivariate correlation analysis revealed correlations between the characteristic peaks and the antioxidant activities of the samples.ConclusionAn HPLC-UV-MS method was developed and validated after a detailed investigation on extraction of chemical compounds from CER using different solvents and extraction times. None of the peaks was correlated with the DPPH free radical scavenging activity or ferric reducing capacity. Most of the peaks were correlated well with the ABTS radical scavenging capacity.

Highlights

  • Citri Exocarpium Rubrum (CER), which is known as Juhong in Chinese, is the dried exocarp of Citrus reticulata Blanco and its cultivars

  • Hesperidin is the only one of these compounds currently described as a chemical marker for quality assessment of CER in the 2015 edition of the Chinese Pharmacopoeia [1], which stipulates that the content of the marker should not be less than 1.7%

  • photodiode array detector (PDA) full scan (190–400 nm) was used to acquire all the main peaks and 330 nm was selected as detection wavelength

Read more

Summary

Introduction

Citri Exocarpium Rubrum (CER), which is known as Juhong in Chinese, is the dried exocarp of Citrus reticulata Blanco and its cultivars (Fam. Rutaceae) and is currently used in Chinese medicine to protect the stomach and eliminate dampness and phlegm. Citri Exocarpium Rubrum (CER), which is known as Juhong in Chinese, is the dried exocarp of Citrus reticulata Blanco and its cultivars (Fam. Rutaceae), and this material is used in Chinese medicine to protect the stomach and eliminate dampness and phlegm [1]. Hesperidin, nobiletin and tangeretin are the main bioactive components of CER, and these compounds have been reported to have several properties, e.g. including antioxidant [4], anti-inflammatory [5] and anticancer activities [5, 6]. Fingerprinting analysis, which represents a much more accurate form of quality control analysis has been introduced and accepted by the World Health Organization (WHO) as an effective strategy for assessing the quality of herbal medicines [10,11,12,13]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.