Abstract

To get a comprehensive view of drought tolerance mechanisms, the influence of water deficit stress on antioxidative capacity due to scavenging of free radicals and ability to maintain reduced cell state was investigated in roots, nodules, leaves, pod wall and seeds of two chickpea cultivars differing in rooting behaviour. ICC4958 (deep rooted) possessed better ability to combat water deficit-induced oxidative stress relative to ILC3279 (shallow rooted) as revealed by increase in total phenol, reducing power, ferric reducing ability and capacity to scavenge 2,2-Diphenyl-1-picryl hydrazyl (DPPH) and OH free radicals. Effect of water deficit stress on photosynthetic pigments of these cultivars was also studied. The investigation revealed that the influence of water stress in enhancing antioxidative capacity was most prominent in roots of ICC4958 among all other tissues as revealed by increased total phenols, DPPH and OH free radical scavenging activity and total reducing power under stress. However, roots of ILC3279 suffered a decrease in total phenolic content, total reducing power and DPPH free radical scavenging activity under prolonged stress, which was reflected in reduced antioxidative defence in reproductive tissues like decreased reducing power in pod wall and ferric-reducing antioxidant power ability in seeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call