Abstract
Under nonequilibrium conditions, inorganic systems can produce a wealth of life-like shapes and patterns which, compared to well-formed crystalline materials, remain widely unexplored. A seemingly simple example is the formation of salt deposits during the evaporation of sessile droplets. These evaporites show great variations in their specific patterns including single rings, creep, small crystals, fractals, and featureless disks. We have explored the patterns of 42 different salts at otherwise constant conditions. Based on 7,500 images, we show that distinct pattern families can be identified and that some salts (e.g., Na2SO4 and NH4NO3) are bifurcated creating two distinct motifs. Family affiliations cannot be predicted a priori from composition alone but rather emerge from the complex interplay of evaporation, crystallization, thermodynamics, capillarity, and fluid flow. Nonetheless, chemical composition can be predicted from the deposit pattern with surprisingly high accuracy even if the set of reference images is small. These findings suggest possible applications including smartphone-based analyses and lightweight tools for space missions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.