Abstract

Zinc oxide thin film transistors (TFTs) deposited by continuous and pulsed spray pyrolysis were investigated to analyze process kinetics which make reduction of process temperature possible. Thus, fluid mechanics, chemical composition, electrical performance, and deposition and annealing temperature were systematically analyzed. It was found that ZnO layers continuously deposited at 360 °C contained zinc oxynitrides, CO3, and hydro carbonate groups from pyrolysis of basic zinc acetate. Statistically, every second wurtzite ZnO unit cell contained an impurity atom. The purity and performance of the ZnO-TFTs increased systematically with increasing deposition temperature due to an improved oxidation processes. At 500 °C the zinc to oxygen ratio exceeded a high value of 0.96. Additionally, the ZnO film was not found to be in a stabilized state after deposition even at high temperatures. Introducing additional subsequent annealing steps stabilizes the film and allows the reduction of the overall thermal stress to the substrate. Further improvement of device characteristics was obtained by pulsed deposition which allowed a more effective transport of the by-products and oxygen. A significant reduction of the deposition temperature by 140 °C was achieved compared to the same performance as in continuous deposition mode. The trap density close to the Fermi energy could be reduced by a factor of two to 4 × 1017 eV−1 cm−3 due to the optimized combustion process on the surface. The optimization of the deposition processes made the fabrication of TFTs with excellent performance possible. The mobility was high and exceeded 12 cm2/V s, the subthreshold slope was 0.3 V dec−1, and an on-set close to the ideal value of 0 V was achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.