Abstract

BackgroundHimalayan plants are widely used in traditional system of medicine both as prophylactics and therapeutics for high altitude maladies. Our aim was to evaluate the antioxidant capacities and bioactive compounds of methanol and n-hexane extracts of the phytococktail comprising of sea buckthorn (Hippophae rhamnoides), apricot (Prunus armeniaca) and roseroot (Rhodiola imbricata) from trans-Himalaya.MethodsThe 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and nitric oxide (NO) radical scavenging capacities and lipid peroxidation inhibition (LPI) property of the extracts were determined. Total antioxidant power was determined by ferric reducing/antioxidant power (FRAP) assay. Total polyphenol, flavonoid, flavonol, proanthocyanidin and carotenoid were also estimated for both extracts. We have identified and quantified the phyto-chemotypes present in the methanol and n-hexane extracts by hyphenated gas chromatography/mass spectrometry (GC/MS) technique.ResultsAntioxidant capacity assays using DPPH, ABTS, NO, LPI and FRAP exhibited analogous results where the phytococktail showed high antioxidant action. The phytococktail was also found to possess high quantity of total polyphenol, flavonoid, flavonol and carotenoid. A significant and linear correlation was found between the antioxidant capacities and bioactive principles. A total of 32 phyto-chemotypes were identified from these extracts by GC/MS chemometric fingerprinting. Major phyto-chemotypes identified by GC/MS were glycosides, phenylpropanoids and derivatives, terpenoids, alkaloids, phytosterols, fatty acids and esters, alkaloids and derivatives, organic acid esters and aromatic ethers with positive biological and pharmacological actions.ConclusionThe phytococktail extracts were found to contain considerable amount of diverse bioactive compounds with high antioxidant capacities. The presence of hydrophilic and lipophilic antioxidants in the phytococktail could have contributed to the higher antioxidant values. Hence, the phytococktail could be used as natural source of antioxidants to ameliorate disorders associated with oxidative stress.

Highlights

  • Himalayan plants are widely used in traditional system of medicine both as prophylactics and therapeutics for high altitude maladies

  • Chemicals 1,1-diphenyl-2-picrylhydrazyl radical (DPPH∙), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,4,6-tripyridyl-s-triazine (TPTZ), ferrous sulfate (FeSO4.7H2O), aluminium chloride (AlCl3), sodium acetate (C2H3NaO2), sodium carbonate (Na2CO3), potassium persulfate (K2S2O8), potassium chloride (KCl), ferric chloride (FeCl3 · 6H2O), sodium nitroprusside (Na2[Fe(CN)5NO] · 2H2O), egg yolk emulsion, sulfanilic acid (C6H7NO3S), naphthyethylenediamine dihydrochloride, glacial acetic acid, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), ascorbic acid, quercetin and catechin were purchased from Sigma-Aldrich

  • DPPH radical scavenging capacity The free radical scavenging capacity of the phytococktail methanol and n-hexane extracts and the three positive controls viz. QR, ascorbic acid (AA) and BHT were compared through their ability to scavenge DPPH radical

Read more

Summary

Introduction

Himalayan plants are widely used in traditional system of medicine both as prophylactics and therapeutics for high altitude maladies. Extensive epidemiological studies have been conducted to ensure that intake of botanical products is linked with a reduced risk of several chronic diseases [2] and these positive properties of the plant products have been partly ascribed to the components that possess antioxidant capacities [3,4,5,6]. Have received great interest in medicinal chemistry and natural product research for their high antioxidant properties [7]. Isolation and structural elucidation of these bioactive compounds is of prime importance in natural product research to identify and evaluate the therapeutic potential of medicinal plants. Numerous extraction techniques and analytical systems have been developed for the analysis and characterization of active compounds from medicinal plants. Gas chromatography/mass spectrometry (GC/MS) has become an ideal technique for qualitative and quantitative analysis of volatile and semivolatile compounds of plant origin [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call