Abstract

The results of a dew monitoring program performed in Poland with the aim to outline the chemical composition of dew water in meteorological context are presented. Dew samples were collected from eight measurement stations from August 2004 to November 2006. Taking into account the type of land use and characteristics of pollutant emission, sampling sites were divided into the following categories: rural, coastal urban and inland urban stations. Selected anions and cations as well as formaldehyde and sum of phenols were determined. The average TIC (Total Inorganic Ionic Content) values in dew samples ranged from 0.83 to 3.93 between individual stations with 10.9 meq/L as the highest daily value of TIC measured. The average TIC values observed in dew at all stations were at a similar level (2.46 meq/L) when compared with hoarfrost (2.86 meq/L). However, these values were much higher in comparison with other kinds of atmospheric water like precipitation (wet only; 0.37 meq/L) or fog/cloud (1.01 meq/L). The pH values of dew water ranged from 5.22 to 7.35 for urban coastal stations, from 5.67 to 8.02 for urban inland stations and from 4.16 to 8.76 for dew samples collected in the rural area. HCHO was found in 97 % of dew samples, with concentrations ranging from 0.010 to 5.40 meq/L. Excluding stations near the seashore, where the contribution of Na+ and Cl- increased, the most important ions were sulphates. A very low contribution of NO3- and noticeable increase of Ca2+ which were not observed in the case of precipitation and fog water, were typical in all stations. The contribution of ammonium ion was two times higher at rural stations as a result of agricultural ammonia emissions. The strongest correlations were noticed between the sum of acidifying anions SO42- + NO3- and Ca2+ ion for all urban and rural stations. A very strong correlation was also observed for Na+ and Cl- ions in urban coastal stations, as a natural consequence of the location of these stations close to the sea. It was proved that thermal stratification, direction of circulation and local breeze circulation control the atmospheric chemistry at ground level, where dew is formed. The highest TIC values at urban stations were associated with anticyclonic weather, while at rural sites with cyclonic weather situations. The chemistry of dew water in urban coastal stations was closely related to local breeze circulation in the warm season, mainly in the form of diurnal breeze causing a significant increase of the concentration of Na+ and Cl-ions. Thus, dew can be a good indicator of the atmospheric pollution level at a given site. Taking into account both high TIC values and the annual water equivalent estimated at around 50 mm, dew is a considerable factor of wet deposition, responsible for an additional 60 % of pollutant input into the ground when compared with precipitation.

Highlights

  • Dew is the product of direct condensation of atmospheric water vapour on the ground, the temperature of which has fallen below the dew point but not as low as water is freezing point

  • The aim of the present research was to present information about the chemical composition of dew water collected in different places and compare these results with meteorological data

  • Similar results for total inorganic ionic content (TIC) were determined in dew samples collected in Amman (Jordan) – the maximum value of TIC was 7.68 meq/L [19], and in Bordeaux (France), the maximum value of TIC was 4.18 meq/L [15]

Read more

Summary

Introduction

Dew is the product of direct condensation of atmospheric water vapour on the ground, the temperature of which has fallen below the dew point but not as low as water is freezing point. Olszewski [3] measured it as around 6 mm with the use of a dew-recorder, whilst Hutorowicz’s [4] measurements over 10 years revealed that dew formation was observed during 122 nights annually, with a total volume of 53 mm per year. The latter value is equal to around 10 % of annual precipitation. It could be calculated as 0.4 mm per night, as a mean dewfall rate which corresponds to results presented in other studies [5,6,7]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call