Abstract
On the basis of the especially tunable electronic property of Si, several kinds of nanomaterials with atomically dispersed Si were constructed and characterized by extensive first-principles calculations and ab initio molecular dynamics (AIMD) simulations. The new-type Si(X≡Y)n wide-bandgap semiconductors featuring through-space d-π* hyperconjugation exhibit unique properties in photoelectric conversion, photoconductivity, structural mechanics, etc. The SiC8 siligraphene with the planar tetracoordinate Si (ptSi) has a high lithium-storage capacity and comparably facile surface migration behaviors of both Li and Li+, making it a promising anode material for high-performance Li-ion batteries. The atomically dispersed Si sites of 2D monolayer materials, such as ptSi and three- and four-coordinated Si atoms, generally exhibit remarkable catalytic activity toward CO2 activation with different electron mechanisms, resulting in different scaling relations between the activity and the p-band center. The computational findings enrich the understanding of structural and chemical properties of silicon and open up avenues for developing Si-based functional materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.