Abstract

Density functional theory simulations were performed to investigate the structural, electronic, and electrochemical properties of the two-dimensional α-SiX (X = N, P) monolayers as anode material in Li-ion batteries (LIBs). Our result indicates that α-SiX monolayers have excellent mechanical, dynamical, and thermal stability. The obtained adsorption energy values suggest that the Li atom adsorption over α-SiX is a favorable process. According to the Löwdin charge transfer and partial density of states analysis, charge transfer takes place from Li atom to α-SiX monolayers. From the band structure plots, we observed that after the adsorption of a single Li atom, the α-SiX monolayers are converted into a metallic state from the semiconductor state and remain in the metallic state for the different adsorption concentrations of Li atoms, which is essential to facilitate the diffusion of stored electrons. The calculated specific storage capacity is 956.16 and 733.66 mA h g–1 for α-SiN and α-SiP monolayers, respectively, which is remarkably higher than that of the conventional anode materials (such as graphite and TiO2). Ab initio molecular dynamics simulations confirm the room-temperature stability of the α-SiX monolayers at the maximum loading of Li atoms. The lower diffusion energy barriers of 0.30 eV (for α-SiN monolayers) and 0.16 eV (for α-SiP monolayers) ensure good diffusivity of ions over monolayers. The calculated open-circuit voltage is also favorable for battery applications. The aforementioned findings suggest that the α-SiX monolayers could be beneficial and compelling host anode material for high-performance LIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call