Abstract

Using ab initio calculations, a simple model for GaAs1-xNx vapor-phase epitaxy on (100) surface of GaAs was created. By studying As2 and H2 molecules adsorptions and As/N atom substitutions on (100) GaAs surfaces, we obtain a relative stability diagram of all stable surfaces under varying As2, H2, and N2 conditions. We previously proved that this model could describe the vapor-phase epitaxy of GaAs1-x Nx with simple, fully decomposed, precursors. In this paper, we show that in more complex reaction conditions using monomethylhydrazine (MMHy), and dimethylhydrazine (DMHy), it is still possible to use our model to obtain an accurate description of the temperature and pressure stability domains for each surfaces, linked to chemical beam epitaxy (CBE) growth conditions. Moreover, the different N-incorporation regimes observed experimentally at different temperature can be explain and predict by our model. The use of MMHy and DMHy precursors can also be rationalized. Our model should then help to better understand the conditions needed to obtain an high quality GaAs1-xNx using vapor-phase epitaxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.