Abstract

One big challenge for long-lived inverted perovskite solar cells (PSCs) is that commonly used metal electrodes react with perovskite layer, inducing electrode corrosion and device degradation. Motivated by the idea of metal anticorrosion, here, we propose a chemical anticorrosion strategy to fabricate stable inverted PSCs through introducing a typical organic corrosion inhibitor of benzotriazole (BTA) before Cu electrode deposition. BTA molecules chemically coordinate to the Cu electrode and form an insoluble and polymeric film of [BTA-Cu], suppressing the electrochemical corrosion and reaction between perovskite and the Cu electrode. PSCs with BTA/Cu show excellent air stability, retaining 92.8 ± 1.9% of initial efficiency after aging for 2500 hours. In addition, >90% of initial efficiency is retained after 85°C aging for over 1000 hours. PSCs with BTA/Cu also exhibit good operational stability, and 88.6 ± 2.6% of initial efficiency is retained after continuous maximum power point tracking for 1000 hours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.