Abstract

Postcollapse lavas of the Infiernito caldera grade stratigraphically upward from nearly aphyric, high-silica rhyolite (76% SiO2) to highly prophyritic trachyte (62% SiO2). Plagioclase, clinopyroxene, orthopyroxene, magnetite, ilmenite, and apatite occur as phenocrysts throughout the sequence. Sanidine, biotite, and zircon are present in rocks with more than about 67% SiO2. Major and trace elements show continuous variations from 62 to 76% SiO2. Modeling supports fractional crystallization of the observed phenocrysts as the dominant process in generating the chemical variation. Temperatures calculated from coexisting feldspars, pyroxenes, and Fe-Ti oxides agree and indicate crystallization from slightly more than 1100° C in the most mafic trachyte to 800° C in high-silica rhyolite. The compositional zonation probably arose through crystallization against the chilled margin of the magma chamber and consequent rise of more evolved and therefore less dense liquid. Mineral compositions vary regularly with rock composition, but also suggest minor mixing and assimilation of wall rock or fluids derived from wall rock. Mixing between liquids of slightly different compositions is indicated by different compositions of individual pyroxene phenocrysts in single samples. Liquid-solid mixing is indicated by mineral compositions of glomerocrysts and some phenocrysts that apparently crystallized in generally more evolved liquids at lower temperature and higher oxygen fugacity than represented by the rocks in which they now reside. Glomerocrysts probably crystallized against the chilled margin of the magma chamber and were torn from the wall as the liquid rose during progressive stages of eruption. Assimilation is indicated by rise of oxygen fugacity relative to a buffer from more mafic to more silicic rocks. Calculation of density and viscosity from the compositional and mineralogical data indicates that the magma chamber was stably stratified; lower temperature but more evolved, thus less dense, rhyolite overlay higher temperature, less evolved, and therefore more dense, progressively more mafic liquids. The continuity in rock and mineral compositions and calculated temperature, viscosity, and density indicate that compositional gradation in the magma chamber was smoothly continuous; any compositional gaps must have been no greater than about 2% SiO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call