Abstract

Strong compositional zonation of the 34 Ma Grizzly Peak Tuff in west-central Colorado is attended by non-monotonic trends in O, Sr, Nd, and Pb isotope ratios. Fiamme from the tuff cluster in chemical compositions and petrographic characteristics, indicating the magma chamber was not continuously zoned but consisted of at least seven compositional layers. The most mafic magma erupted (57 wt% SiO2, fiamme group 7) had δ18O= +8.5, initial 87Sr/86Sr=0.7099, eNd, and 206Pb/204Pb=17.80, suggesting that the magma was produced by ∼50% fractional crystallization of basaltic magma that assimilated 20 to 40 wt% Proterozoic crust. Isotopic compositions of more evolved parts of the chamber (up to 77 wt% SiO2, fiamme group 1) depart from the mafic “base-level” composition of fiamme group 7, and reflect late-stage assimilation that occurred largely after compositional layering was established. δ18O values decrease by as much as 1.5‰ from fiamme groups 7 through 4, indicating assimilation of hydrothermally altered roof rocks. δ18O values abruptly inerease by up to 1.5‰ between fiamme groups 4 and 3. This discontinuity is interpreted to reflect evolution in an asymmetric chamber that had a split-level roof, allowing assimilation of wall rocks that varied vertically in degree of hydrothermal alteration. This chamber geometry is also supported by collapse structures in the caldera. Late-stage assimilation of heterogeneous wall rocks is also indicated by variations in Sr, Nd, and Pb isotope ratios. Large Sr isotope disequilibrium exists between some phenocrysts and whole-rock fiamme, and initial 87Sr/86Sr ratios in phenocrysts are as high as 0.7170. e values regularly increase from-13.0 in fiamme group 7 to-11.3 in fiamme group 3, and then decrease to-12.2 in fiamme group 1. 206Pb/204Pb ratios generally increase from 17.80 to 17.94 for fiamme groups 7 through 1. The rhyolitic parts of the Grizzly Peak Tuff have isotopic compositions that could be attributed to a purely crustal melt. It is unlikely, however, that the mafic parts of the tuff were generated by crustal melting, and the compositional and isotopic variations across the entire zonation of the tuff are best explained by fractional crystallization of mantle-derived magmas, accompanied by extensive assimilation of Proterozoic crust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call