Abstract

In this work, we investigate the crystalline structure and the chemical properties of a “metal/high ” gate stack with TaN as the gate electrode and as the dielectric. Both TaN and were deposited using atomic vapor deposition. We show that a 3 nm thick layer of is crystallized when it is integrated, whereas it is amorphous as deposited. Increasing the TaN thickness increases the amount of the TaN crystalline face-centered cubic phase. Concerning the gate-stack chemistry, oxygen and nitrogen diffusion between the layers is shown. This occurs during the gate electrode deposition for all TaN thicknesses. We show that the gate stacks, including thick TaN layers, are not chemically stable under the spike annealing used for dopant activation because oxygen and nitrogen diffusion is increased by this thermal treatment. Gate stacks with a thinner TaN layer are much more stable under annealing because they are already partially oxidized before annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.