Abstract

Sub-20 nm patterns have been fabricated by using oxidation scanning probe lithography on epitaxial graphene. The structural and chemical properties of these nanopatterns have been characterized by high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. The electron microscopy images reveal that the nanolithography process modifies the graphene monolayer and a thin region of the SiC substrate (1 nm thick). Spatially-resolved electron spectroscopies show that the nanopatterns are made of graphene oxide. The combination of spatially-resolved structural and chemical analysis of graphene nanopatterns will enable the development of high-performance graphene devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.