Abstract

We report the synthesis of porous single crystalline ZnO nanodisks with sponge-like morphology through a wet chemical approach. To our best knowledge, this is the first report about highly porous single crystalline nanodisks of ZnO with an average diameter of ∼100 nm. The ZnO nanodisks exhibit strong visible (blue-green) light emission on UV excitation. Scanning Transmission Electron Microcopy (STEM), High-Resolution Transmission Electron Microscopy (HRTEM), and Selected Area Electron Diffraction (SAED) were performed to confirm that the nanodisks are single crystalline and porous in nature. The porosity of the nanodisks gives them the sponge-like appearance. Energy Dispersive X-ray Spectrometry (EDS) and Electron Energy Loss Spectrometry (EELS) analysis of the nanodisks together with high-resolution electron microscopy and photoluminescence measurements were used to determine the cause of the visible emission and its relation to the sponge-like morphology and growth mechanism. The larger surface area to volume ratio of these sponge-like nanostructures makes them very attractive for applications like biochemical sensors and solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.