Abstract
Anthocyanins are water-soluble pigments found in the cell vacuoles of fruits and flowers, performing several roles from insects attraction to stress protection. Their antioxidant activity contributes to human health, and consuming plant-derived products provides their higher source in the diet. Although their colour and nutritional features, their contribution to sensory properties of foods has not been widely investigated. In wine, preferences are connected with sensory attributes of colour, aroma, taste, and mouthfeel. In this study, grape anthocyanin extracts (TAE) were fractionated using centrifugal partition chromatography (CPC) and preparative HPLC in three fractions, i.e glucoside (GF), acetylated (AF) and cinnamoylated (CF) anthocyanins. Sensory properties were investigated by chemical analysis, as reactivity towards bovin serum albumin (BSA) and salivary proteins, and in tasting sessions to assess anthocyanins best estimated thresholds (BET) in wine-like solution. Anthocyanins reacted with both BSA and salivary proteins, but to different extents, because higher interaction between salivary proteins and anthocyanins were found. Cinnamoylated anthocyanins are the most reactive to salivary proteins. Tasting sessions suggested an involvement of anthocyanins as in-mouth contributors in wine, since their BETs were 255, 297, 68, and 58 mg/L for TAE, GF, AF, and CF, respectively, and the descriptors reported were astringency and bitterness.
Highlights
The in-mouth sensory properties of wine are a complex mixture of taste and mouth-feel sensations, mostly astringency, and flavour
In this study, grape anthocyanins were extracted from skins and fractionated in classes depending on their substitution, i.e. glucoside, acetylated and cinnamoylated, by a combination of liquid–liquid chromatography (CPC) and preparative-HPLC
Yield and purity were of sufficient quality and quantity to investigate their sensory properties, in particular regarding glucoside anthocyanins whereas acetylated and cinnamoylated anthocyanins contained some impurities
Summary
The in-mouth sensory properties of wine are a complex mixture of taste (e.g. bitterness, acidity, sweetness, and saltiness) and mouth-feel sensations, mostly astringency, and flavour. These reactions produce more complex molecules as long as the wine continues to age, and they are responsible of a minor content of monomeric anthocyanins in aged wines[21,22,23,24,25,26,27,28,29,30,31,32,33] and Table S1 provides an overview of grape and wine contents of pigmented materials This process is considered to be responsible for the changing sensory properties of wine during ageing, such as the shift of colour from bluish-red to orange and the increasing smoothness of astringency for the complexation of monomeric and polymeric flavanols. Vidal et al.[40] found no differences either in model wine added with glucosides or coumaroylated anthocyanins or in slightly unbuffered ethanolic solution (5%), thereby confirming the in-mouth sensation reported previously as impurities in the isolated fractions
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have