Abstract
In recent ages, industrial revolution and natural weathering processes have been increasing lead (Pb) contamination in agricultural soils, therefore, green remediation technologies are becoming attractive and cost-effective. In the current pot study, 1% and 2% (w/w) application rates of sulfur (S) alone and novel chemo-mechanically S-modified baby corn biochars (CSB and MSB) were applied in a Pb-contaminated (500 mg/kg) soil to evaluate tomato (Lycopersicon esculentum L.) growth, Pb uptake and its soil availability. The results from SEM-EDS and XRD patterns confirmed the S enrichment on the surface of baby-corn biochar. Further, Pb treatment alone imposed a significant reduction in biomass accumulation, photosynthetic pigments, antioxidative mechanism, root traits, and Pb-tolerance index because of increased soil Pb availability and its uptake, translocation and biological accumulation in various tissues of tomato. However, incorporation of lower rate of elemental S (1%) and higher rates of biochars, especially chemically S-modified biochar, CSB (2%) significantly improved dry biomass production, Pb-tolerance index, physiological attributes and antioxidative defense system of tomato plants. These results might be due to a prominent decrease in soil Pb availability by 37.5%, Pb concentration in shoot by 66.7% and root by 58.3%, soil to root transfer by 33.8%, and root to shoot transfer by 20.2% in tomato plants under 2% application rate of CSB, as compared with the Pb treatment without any amendment. Moreover, sulfur treatment induced a significant impact in reduction of soil pH (from 8.97-7.47) as compared to the biochar treatments under Pb-toxicity. The current findings provided an insight that 2% chemically S-modified biochar (CSB) has significant potential to improve the tomato growth by reducing Pb bioavailability in the Pb-contaminated soil, compared to the S alone and MSB amendments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.