Abstract

AbstractThis mini‐review comprehensively outlines the latest advancements in protecting zinc anodes in zinc‐ion batteries (ZIBs) through chelation mechanisms. Chelation involves the coordination of ligands with Zn2+, offering promising strategies to address challenges such as dendrite formation and hydrogen evolution reactions. However, there is a lack of comprehensive and unified evaluation of chelation‘s protective effect on the zinc anode, which hinders a thorough assessment of chelation‘s effectiveness. Recent studies have demonstrated the excellent protective performance of chelation in altering solvation structures, modifying SEI structures, and selectively adsorbing species on the zinc anode. Furthermore, while chelation demonstrates significant benefits for the zinc anode, its impact on cathode materials must also be considered. Proper selection of chelation strengths and compatible cathode materials is essential for overall battery performance. Future research directions include exploring the effects of different ligands and coordination numbers on battery performance and extending chelation strategies to other secondary metal batteries. Understanding and optimizing chelation mechanisms are critical for advancing the development of high‐performance ZIBs and other metal‐ion battery technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.