Abstract

This article describes the retention properties of commercial chelating water-soluble polymers, for different metal ions in aqueous solution using a liquid-phase polymer-based retention (LPR) technique. The polymers studied were poly(ethyleneimine) or P(EI) (water-free and a 50 % aqueous solution) and poly(ethyleneimine epichlorohydrin) or P(EIE) (a 17 % aqueous solution). These commercial polymers were fractionated by ultrafiltration membranes and then characterized by Fourier-transformed infrared spectroscopy. The extraction process was performed using the following metal ions: Cu2+, Cd2+, Co2+, Ni2+, Zn2+, Pb2+ and Cr3+. In the washing studies, we varied the pH (3, 5 and 7) and retention time. The results showed that P(EI) showed high retention for all the metal ions at pH 7 and for selective retention of Cu2+ at pH 5, while P(EIE) showed selective retention of Cu2+ ions at pH 7. Using the enrichment method, the maximum retention capacity of Cu2+ and Cd2+ was achieved using a 50 % aqueous solution of P(EI) at pH 5 and 7, respectively. Finally, charge–discharge experiments for Cu2+ were analysed by changing the pH from basic to acidic over three cycles. These results showed that it is possible to remove metal ions and regenerate the removal capacity of the polychelatogens using the LPR technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.