Abstract

In this study, a Chebyshev spectral collocation method (CSCM) approximation is proposed for solving the full magnetohydrodynamics (MHD) equations coupled with energy equation. The MHD flow is two-dimensional, unsteady, laminar and incompressible, and the heat transfer is considered using the Boussinesq approximation for thermal coupling. The flow takes place in a square cavity which is subjected to a vertically applied external magnetic field, and the presence of the induced magnetic field is also taken into account due to the electrical conductivity of the fluid. The governing equations given in terms of stream function, vorticity, temperature, magnetic stream function, and current density, are solved iteratively using CSCM for the spatial discretisation, and an unconditionally stable backward difference scheme for the time integration. The induced magnetic field is obtained by means of its relation to the magnetic stream function. The behaviours of the flow and the heat transfer are investigated for varying values of Reynolds ($Re$), magnetic Reynolds ($Rem$), Rayleigh ($Ra$) and Hartmann ($Ha$) numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.