Abstract

We study Chebyshev-polynomial expansion of the inverse localization length of Hermitian and non-Hermitian random chains as a function of energy. For Hermitian models, the expansion produces this energy-dependent function numerically in one run of the algorithm. This is in strong contrast to the standard transfer-matrix method, which produces the inverse localization length for a fixed energy in each run. For non-Hermitian models, as in the transfer-matrix method, our algorithm computes the inverse localization length for a fixed (complex) energy. We also find a formula of the Chebyshev-polynomial expansion of the density of states of non-Hermitian models. As explained in detail, our algorithm for non-Hermitian models may be the only available efficient algorithm for finding the density of states of models with interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.