Abstract

We apply the methods of nonsmooth and convex analysis to extend the study of Chebyshev (uniform) approximation for univariate polynomial functions to the case of general multivariate functions (not just polynomials). First of all, we give new necessary and sufficient optimality conditions for multivariate approximation, and a geometrical interpretation of them which reduces to the classical alternating sequence condition in the univariate case. Then, we present a procedure for verification of necessary and sufficient optimality conditions that is based on our generalization of the notion of alternating sequence to the case of multivariate polynomials. Finally, we develop an algorithm for fast verification of necessary optimality conditions in the multivariate polynomial case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call