Abstract

In this paper, we derive optimality conditions for Chebyshev approximation of multivariate functions. The theory of Chebyshev (uniform) approximation for univariate functions was developed in the late nineteenth and twentieth century. The optimality conditions are based on the notion of alternance (maximal deviation points with alternating deviation signs). It is not clear, however, how to extend the notion of alternance to the case of multivariate functions. There have been several attempts to extend the theory of Chebyshev approximation to the case of multivariate functions. We propose an alternative approach, which is based on the notion of convexity and nonsmooth analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.