Abstract
The generation of chatter during machining operations is extremely detrimental to the cutting tool life and the surface quality of the workpiece. The present study aims to identify chatter conditions during the end milling of Ti6Al4V alloy. Experimental modal analysis is carried out, and stability lobe diagrams (SLDs) are developed to identify machining parameters under stable and chatter conditions. Experiments are conducted to acquire cutting force and vibration signatures corresponding to machining conditions selected from the SLD. Non-linear chatter features, such as Approximate Entropy, Holder Exponent, and Lyapunov Exponent extracted from the sensor signatures, are used to build Machine Learning (ML) models to identify chatter using Decision Trees (DTs), Support Vector Machines (SVMs) and DT-based Ensembles. A feature-level fusion approach is adopted to improve the classification performance of the ML models. The DT-based Adaboost model trained using dominant non-linear features classifies chatter with an accuracy of 96.8%. The non-linear features extracted from the sensor signatures offer a direct indication of the chatter and are found to be effective in identifying the machining chatter with good accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Prognostics and Health Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.