Abstract
Parallel turning is garnering attention as one of the most important technologies for multitasking machine tools. This is because a potential exists to enhance the stability limits compared to the turning operation using a single tool when cutting conditions are properly selected. Although stability prediction models for parallel turning have been developed in recent years, in-process monitoring and in-process chatter techniques are almost not discussed. In this study, to suppress chatter vibration, an unequal pitch turning method was proposed. In this method, the upper tool was controlled based on the optimum pitch angle calculated from spindle speed and chatter frequency. Chatter frequency was identified from estimated cutting force by a disturbance observer (DOB). From the result of the parallel turning test, it is clear that chatter vibration can be avoided by controlling the upper tool based on optimum pitch angle. Meanwhile, the pitch angle difference that can suppress chatter had a certain range. Subsequently, the robustness of the optimum pitch angle difference is experimentally evaluated by both the continuous moving test and the stepwise moving test of the pitch angle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have