Abstract
For a longer endurance of vertical and level cruise flight, an electro-gasoline hybrid power system is introduced on a compound-wing unmanned aerial vehicle (UAV). After discharging during vertical flight, the battery pack is charged by a piston engine-driven generator, which simultaneously powers the UAV for level cruise flight. A charging model is established based on the configuration of the hybrid power system. Considering fuel consumption and battery attenuation within the typical flight profile of a compound-wing UAV, an optimized charging plan is developed using dynamic programming to determine the trajectory of the generated power sequence. To address deviations between ideal and practical flight conditions in terms of charging performance, a feedforward compensation is introduced to improve optimal tracking control within the dynamic programming framework. Simulations validate the effectiveness of the optimized charging plan, while testbench experiments confirm improvements achieved through compensation enhancement. The results demonstrate practicality with minimal overall cost compared to other conventional control plans.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have