Abstract

We investigate the charge-order transition at zero temperature in a two-leg Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. We consider electron densities between quarter and half filling. For quarter filling and U=8t, we find evidence for a continuous phase transition between a homogeneous state at small V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge order at large V. This transition to a checkerboard charge-ordered state remains present at all larger fillings, but becomes discontinuous at sufficiently large filling. We discuss the influence of U/t on the transition and estimate the position of the tricritical points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call