Abstract
We study charged boson stars in scalar-tensor (ST) gravitational theories. We analyze the weak field limit of the solutions and analytically show that there is a maximum charge to mass ratio for the bosons above which the weak field solutions are not stable. This charge limit can be greater than the GR limit for a wide class of ST theories. We numerically investigate strong field solutions in both the Brans-Dicke and power law ST theories. We find that the charge limit decreases with increasing central boson density. We discuss the gravitational evolution of charged and uncharged boson stars in a cosmological setting and show how, at any point in its evolution, the physical properties of the star may be calculated by a rescaling of a solution whose asymptotic value of the scalar field is equal to its initial asymptotic value. We focus on evolution in which the particle number of the star is conserved and we find that the energy and central density of the star decrease as the cosmological time increases. We also analyze the appearance of the scalarization phenomenon recently discovered for neutron stars configurations and, finally, we give a short discussion on how making the correct choice of mass influences the argument over which conformal frame, the Einstein frame or the Jordan frame, is physical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.