Abstract

We study the dynamics of charged test particles around an electrically charged black hole in Einstein–Maxwell-scalar (EMS) gravity. The event horizon properties of the spacetime around the black hole are explored and the upper limit for the EMS theory parameters corresponding to extreme charge and minimal value of the event horizon are found. The effective potential for the radial motion of the charged particles at the equatorial plane is investigated. Specific energy and angular momentum of the particles corresponding to circular stable orbits are also studied. We also investigate the effects of the EMS parameter and the black hole charge on innermost stable circular orbits (ISCOs). We also investigate synchrotron radiation of charged particles in the spacetime of the charged black hole in EMS gravity. We also explore electric Penrose and Bañados–Silk–West processes near the black hole horizon, where we analyse in detail the effects of EMS parameters on energy efficiency in the Penrose process and critical angular momentum that allows colliding particles near the horizon, together with the center of mass energy in charged particles collisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call