Abstract
Using first-principles calculations within density functional theory, we explore systematically the capacity of charged carbon fullerenes Cn (20 <or= n <or= 82) as hydrogen storage media. We find that the binding strength of molecular hydrogen on either positively or negatively charged fullerenes can be dramatically enhanced to 0.18-0.32 eV, a desirable range for potential room-temperature, near ambient applications. The enhanced binding is delocalized in nature, surrounding the whole surface of a charged fullerene, and is attributed to the polarization of the hydrogen molecules by the high electric field generated near the surface of the charged fullerene. At full hydrogen coverage, these charged fullerenes can gain storage capacities of up to approximately 8.0 wt %. We also find that, contrary to intuitive expectation, fullerenes containing encapsulated metal atoms only exhibit negligible enhancement in the hydrogen binding strength, because the charge donated by the metal atoms is primarily confined inside the fullerene cages. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.