Abstract

ABSTRACTThe charge transport properties in polycrystalline pentacene thin film transistors is investigated. A potential barrier is formed at grain boundaries due charged trapping states. The influence of such grain boundaries on the hole mobility of the devices is analyzed for different grain sizes, trap concentrations, and carrier densities. The results reveal that room temperature mobilities exceeding 0.5 cm2/Vs can be obtained in thin films with large grains as well as in nanocrystalline material. Consequently, single crystal device limits can be reached also by polycrystalline pentacene thin film transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call