Abstract

We analyze current versus voltage data obtained using single carrier injection in several metal/polymer/metal sandwich structures. The polymer used in each case is a soluble blue-emitting alternating block copolymer. Our experimental results demonstrate that the electron transport is space-charge limited by the high density of traps having an exponential energy distribution (temperature dependent characteristic energy) in the copolymer. The electron mobility of 8×10−10 cm2/V s is directly determined using space-charge-limited current analytical expressions. Hole transport is also space-charge limited, with a mobility of 2×10−6 cm2/V s. A hole trap with energy 0.17 eV is observed. We compare these results with those obtained for related block copolymers with different spacer and conjugated segment lengths and discuss the influence of spacer length and conjugated segment length on the charge transport properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.