Abstract

Here, we report charge-transfer-driven self-assembly of conjugated block copolymers (BCP) into highly doped conjugated polymer nanofibers. The ground-state integer charge transfer (ICT) between a BCP composed of poly(3-hexylthiophene) and poly(ethylene oxide) (P3HT-b-PEO) and electron-deficient 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) induced spontaneous self-assembly of the donor and the acceptor into well-defined one-dimensional nanofibers. The presence of the PEO block plays an important role for the self-assembly by providing a polar environment that can stabilize nanoscale charge transfer (CT) assemblies. The doped nanofibers were responsive to various external stimuli such as heat, chemical, and light and exhibited efficient photothermal properties in the near-IR region. The CT-driven BCP self-assembly reported here provides a new platform for the fabrication of highly doped semiconductor nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call