Abstract

We describe the charge transfer interactions between photoexcited CdS nanorods and mononuclear water oxidation catalysts derived from the [Ru(bpy)(tpy)Cl](+) parent structure. Upon excitation, hole transfer from CdS oxidizes the catalyst (Ru(2+) → Ru(3+)) on a 100 ps to 1 ns timescale. This is followed by 10-100 ns electron transfer (ET) that reduces the Ru(3+) center. The relatively slow ET dynamics may provide opportunities for the accumulation of multiple holes at the catalyst, which is necessary for water oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.