Abstract

The debonding rates of H-passivated P and As in silicon have been observed to be very sensitive to the concentration of majority and minority charge carriers. A theoretical study of the stable and metastable configurations of the {l brace}P,H{r brace} and {l brace}As,H{r brace} pairs in the 0 and +1 charge states has been carried out at the near-ab-initio Hartree-Fock level. These calculations show that the lowest-energy configuration in the 0 charge state is the highest-energy configuration in the +1 charge state and vice-versa. This bistability of donor-hydrogen pairs implies that H cannot remain in place upon change of charge state, whether 0 {r arrow} +1 or +1 {r arrow} 0. Quantitative differences between the P and the As cases are qualitatively consistent with the observed differences in the temperature dependence of the debonding rates of {l brace}P,H{r brace} and {l brace}As,H{r brace}. 14 refs., 1 fig.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call