Abstract

AbstractThe effects of in situ interventions which alter defect interactions during implantation, and thereby affect the final damage state, have been investigated. Specifically, we examined the effects of internal electric fields and charge carrier injection on damage accumulation in silicon. In the first part of this work, we implanted H or He ions into diode structures which were either reverse or forward biased during implantation. In the second part, we implanted B or Si ions into plain silicon wafers whilst illuminating them with UV light. In each case, the overall effect is one of damage reduction. Both the electric field and charge carrier injection effects may be understood as resulting from changes in defect interactions caused in part by changes to the charge state of defects formed during implantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.