Abstract

AbstractThe past decade has seen a dramatic surge in the power conversion efficiency (PCE) of next‐generation solution‐processed thin‐film solar cells rapidly closing the gap in PCE of commercially‐available photovoltaic (PV) cells. Yet the operational stability of such new PVs leaves a lot to be desired. Specifically, chemical reaction with absorbers via high‐energy photons transmitted through the typically‐adapted metal oxide electron transporting layers (ETLs), and photocatalytic degradation at interfaces are considered detrimental to the device performance. Herein, the authors introduce a device architecture using the narrow‐gap, Indium Arsenide colloidal quantum dots (CQDs) with discrete electronic states as an ETL in high‐efficiency solution‐processed PVs. High‐performing PM6:Y6 organic PVs (OPVs) achieve a PCE of 15.1%. More importantly, as the operating stability of the device is significantly improved, retaining above 80% of the original PCE over 1000 min under continuous illumination, a Newport‐certified PCE of 13.1% is reported for nonencapsulated OPVs measured under ambient air. Based on operando studies as well as optical simulations, it suggested that the InAs CQD ETLs with discrete energy states effectively cut‐off high‐energy photons while selectively collecting electrons from the absorber. The findings of this works enable high‐efficiency solution‐processed PVs with enhanced durability under operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.