Abstract

Changes in the nuclear charge radii of lithium isotopes were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. We discuss the choice of the reference isotope for absolute charge radii determinations in the lithium isotopic chain and report a new value for the charge radius of ${}^{6}$Li, based on the analysis of the world scattering data. A summary of the lithium nuclear charge radii obtained in this way is presented. Additionally, new calculations in fermionic molecular dynamics for the lithium isotopes were performed. We summarize the status of the lithium nuclear charge radii, magnetic dipole and electric quadrupole moments from experimental investigations and compare them to the results of various microscopic and three-body nuclear models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.