Abstract
The electronic properties of epitaxial graphene grown on SiC(0001) are known to be impaired relative to those of freestanding graphene. This is due to the formation of a carbon buffer layer between the graphene layers and the substrate, which causes the graphene layers to become strongly $n$-doped. Charge neutrality can be achieved by completely passivating the dangling bonds of the clean SiC surface using atomic intercalation. So far, only one element, hydrogen, has been identified as a promising candidate. We show, using first-principles density functional calculations, how it can also be accomplished via the growth of a thin layer of silicon nitride on the SiC surface. The subsequently grown graphene layers display the electronic properties associated with charge neutral graphene. We show that the surface energy of this structure is considerably lower than that of others with intercalated atomic nitrogen and determine how its stability depends on the ${\mathrm{N}}_{2}$ chemical potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.