Abstract
Pure BiFeO3 (BFO) and Mn, Cu co-doped BiFeO3 (BFMCO) thin films were deposited on fluorine doped tin oxide (FTO) substrates by a chemical solution deposition method. Detailed investigations were made on the effects of Mn and Cu co-doping on the crystal structure, the defect chemistry, multiferroic properties of the BFO thin films. With the co-doping of Mn and Cu, a structural transition from the rhombohedral (R3c:H) to the biphasic structure (R3c:H + P1) is confirmed by XRD, Rietveld refinement and Raman analysis. X-ray photoelectron spectroscopy (XPS) analysis shows that the coexistence of Fe2+/Fe3+ and Mn2+/Mn3+ ions in the co-doping films are demonstrated. Meanwhile, the way of the co-doping at B-sits is conducive to suppress Fe valence state of volatility and to decrease oxygen vacancies and leakage current. It's worth noting that the co-doping can induce the superior ferroelectric properties (a huge remanent polarization, 2Pr ∼ 220 μC/cm2 and a relatively low coercive field, 2Ec ∼ 614 kV/cm). The introduction of Mn2+ and Cu2+ ions optimizes the magnetic properties of BFO thin films by the biphasic structure and the destruction of spin cycloid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.