Abstract

We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be −5.93 and −3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10−6 and 2.1 × 10−6 cm2·V−1·s−1 was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10−6 cm2·V−1·s−1 and a hole mobility of 1.4 × 10−4 cm2·V−1·s−1. The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement.

Highlights

  • Since the field of organic electronics has emerged, interest in organic semiconductors (OSCs) has substantially increased [1]

  • To confirm the purity of the complex, proton and carbon nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) were carried out and compared with the data reported in previous work [16]

  • In order to evaluate the potential incorporation of Al(Op)3 in organic-based devices, we have estimated its HOMO/LUMO energies by electrochemical and photophysical methods in solution

Read more

Summary

Introduction

Since the field of organic electronics has emerged, interest in organic semiconductors (OSCs) has substantially increased [1]. Since its first implementation in OLEDs devices [3], the small p-conjugated tris(8-hydroxyquinolinolate)aluminum(III) (Alq3) is still the most commonly used and studied electron transport material among the small-molecule-based OSCs [4]. Lower LUMO and HOMO energies enable easier reduction of the metal chelate, leading to enhanced electron injection and transport properties, and an increased resistance to oxidization, resulting in an improved hole blocking character. For this very reason we have synthesized and studied the phenalenyl-based alternative, OSC tris(1-oxo-1H-phenalen-9-olate)aluminum(III) (Al(Op)3) (see Figure 1), which is formed by ligands with an extended aromatic system. The expected result is an increased capability to accept and efficiently delocalize additional electrons, and Al(Op), should be characterized by both lower HOMO and LUMO energy levels as compared to Alq

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call