Abstract

The candidate magnetoelectric Pb3Mn7O15 has a structure consisting of one-third filled kagome layers linked by ribbons of edge sharing octahedra in the stacking direction. Previous reports have indicated a complex hexagonal–orthorhombic structural transition upon cooling through ∼335 K, although its origins are uncertain. Here both structures are revisited using a combination of neutron and synchrotron x-ray diffraction data. Large shifts of oxygen positions are detected, which show that the interlayer sites and those which occupy voids in the kagome lattice are trivially charge ordered in both phases. The symmetry breaking is found to occur due to Mn3+ orbital ordering on the ribbon sites and charge ordering of the subset of layer sites which make up a kagome network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.