Abstract

The charge and heat energy transfer dynamics of directly coupled mixtures of CdSe quantum dots with metal nanoparticles have been studied using thermal lens and photoluminescence (PL) techniques, respectively. The PL of such nanohybrids is found to be quenched dramatically at a particular threshold. Fluorescence decay curves of the Au–CdSe nanohybrids and Ag–CdSe nanohybrids show distinct decay channels with the fastest one associated with transfer of electrons from the CdSe portion to the metal portion. A study on the influence of this charge transfer on the thermal diffusivity with respect to the emission wavelength of quantum dots has been carried out, which could lead to the design of modern photocatalysts and solar cells constructed from nanoscale metal–semiconductor hybrids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.