Abstract
The increasing penetration of power electronics in power grids significantly raises the computing requirements in a real-time (and/or fast) simulation of the power grid. The real-time simulation is an enabler for evaluating controllers, protection systems, new equipment, and twinning. In this paper, emerging computing architectures such as tensor processing units (TPU), neural/neuromorphic processing units (NPU), and quantum processing units (QPU) are introduced and characterized for the real-time (and/or fast) simulation of power electronics-dominated power grids. The metrics and the process to characterize emerging computing architectures to perform real-time (and/or fast) simulations of future power grids with power electronics are discussed. Three of the emerging computing units are characterized based on these metrics and the process developed. This characterization will enable identification and comparison of emerging computing architectures that can perform real-time (and/or fast) simulation of future power grids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.